How to Obfuscate Java Code in Android Apps
Learn to Obfuscate App Logic in Android apps, in mobile CI/CD with a Data-Driven DevSecOps™ build system.
What is Java Code in Android Apps?
Java is a programming language used in mobile app development for building Android apps. Java code consists of human-readable instructions that define the app’s functionality. These instructions use clear terms like “if,” “for,” and meaningful names for methods (functions) and variables (data holders). However, during the build process, this Java code gets compiled into bytecode, a lower-level language understood by the Java Virtual Machine (JVM), an intermediate format that the Android system interprets. Bytecode offers no protection, making it highly susceptible to reverse engineering by tools such as Smali and JADX, which take the Java source code and decompile it into a readable format that allows attackers to examine an app’s functionality and behavior. This can be risky, especially for apps that handle sensitive data or have unique algorithms.
Why Does Java Need it's Own Obfuscation?
Once an attacker has access to the .dex files (containing the bytecode), they can potentially reverse-engineer the logic behind your app and expose your intellectual property and core functionalities. Obfuscation is a security technique that deliberately obscures the internal workings of your code without affecting its functionality. Appdome’s Obfuscate App Logic feature involves renaming methods, functions, variables, and classes within the bytecode. These originally clear and descriptive names are replaced with cryptic characters, making it significantly more challenging to understand the app’s logic by simply looking at the bytecode. This process is essential in preventing attackers from using static code analysis to dissect the application’s functionality, ensuring the security and integrity of the app’s business logic, and protecting intellectual property. Through obfuscation, developers can significantly mitigate the risks associated with code tampering and piracy, preserving the application’s reliability and user trust.
In addition to Obfuscate App Logic, app developers can choose to enforce Appdome’s Dex File Encryption feature. However, it is important to note that Dex File Encryption may cause latency issues. To reduce the latency, we recommend managing the amount of code you’re encrypting.
Prerequisites for Using Obfuscate App Logic:
To use Appdome’s mobile app security build system to Obfuscate App Logic , you’ll need:
- Appdome account (create a free Appdome account here)
- A license for Obfuscate App Logic
- Mobile App (.apk or .aab for Android)
- Signing Credentials (see Signing Secure Android apps and Signing Secure iOS apps)
Obfuscate App Logic on Android apps using Appdome
On Appdome, follow these 3 simple steps to create self-defending Android Apps that Obfuscate App Logic without an SDK or gateway:
-
Upload the Mobile App to Appdome.
-
Upload an app to Appdome’s Mobile App Security Build System
-
Upload Method: Appdome Console or DEV-API
-
Android Formats: .apk or .aab
-
Obfuscate App Logic Compatible With: Java, JS, C++, C#, Kotlin, Flutter, React Native, Unity, Xamarin, Cordova and other Android apps
-
-
Build the feature: Obfuscate App Logic.
-
Building Obfuscate App Logic by using Appdome’s DEV-API:
-
Create and name the Fusion Set (security template) that will contain the Obfuscate App Logic feature as shown below:
-
Follow the steps in Sections 2.2.1-2.2.2 of this article, Building the Obfuscate App Logic feature via Appdome Console, to add the Obfuscate App Logic feature to this Fusion Set.
-
Open the Fusion Set Detail Summary by clicking the “...” symbol on the far-right corner of the Fusion Set. Copy the Fusion Set ID from the Fusion Set Detail Summary (as shown below):
Figure 2: Fusion Set Detail Summary
Note: Annotating the Fusion Set to identify the protection(s) selected is optional only (not mandatory). -
Follow the instructions below to use the Fusion Set ID inside any standard mobile DevOps or CI/CD toolkit like Bitrise, App Center, Jenkins, Travis, Team City, Circle CI or other system:
-
Build an API for the app – for instructions, see the tasks under Appdome API Reference Guide
-
Look for sample APIs in Appdome’s GitHub Repository
-
Figure 1: Fusion Set that will contain the Obfuscate App Logic feature
Note: Naming the Fusion Set to correspond to the protection(s) selected is for illustration purposes only (not required). -
-
Building the Obfuscate App Logic feature via Appdome Console
To build the Obfuscate App Logic protection by using Appdome Console, follow the instructions below.
-
Where: Inside the Appdome Console, go to Build > Security Tab > TOTALCode™ Obfuscation section.
-
When you select the Obfuscate App Logic you'll notice that your Fusion Set you created in step 2.1.1 now bears the icon of the protection category that contains Obfuscate App Logic
Figure 4: Fusion Set that displays the newly added Obfuscate App Logic protection
-
Click Build My App at the bottom of the Build Workflow (shown in Figure 3).
-
Congratulations! The Obfuscate App Logic protection is now added to the mobile app -
-
Certify the Obfuscate App Logic feature in Android Apps
After building Obfuscate App Logic, Appdome generates a Certified Secure™ certificate to guarantee that the Obfuscate App Logic protection has been added and is protecting the app. To verify that the Obfuscate App Logic protection has been added to the mobile app, locate the protection in the Certified Secure™ certificate as shown below:
Figure 5: Certified Secure™ certificate
Each Certified Secure™ certificate provides DevOps and DevSecOps organizations the entire workflow summary, audit trail of each build, and proof of protection that Obfuscate App Logic has been added to each Android app. Certified Secure provides instant and in-line DevSecOps compliance certification that Obfuscate App Logic and other mobile app security features are in each build of the mobile app
Using Threat-Events™ for App Logic Intelligence and Control in Android Apps
Appdome Threat-Events™ provides consumable in-app mobile app attack intelligence and defense control when App Logic is detected. To consume and use Threat-Events™ for App Logic in Android Apps, use registerReceiver in the Application OnCreate, and the code samples for Threat-Events™ for App Logic shown below.
The specifications and options for Threat-Events™ for App Logic are:
Threat-Event™ Elements | Obfuscate App Logic Method Detail |
---|---|
Appdome Feature Name | Obfuscate App Logic |
Threat-Event Mode | |
OFF, IN-APP DEFENSE | Appdome detects, defends and notifies user (standard OS dialog) using customizable messaging. |
ON, IN-APP DETECTION | Appdome detects the attack or threat and passes the event in a standard format to the app for processing (app chooses how and when to enforce). |
ON, IN-APP DEFENSE | Uses Appdome Enforce mode for any attack or threat and passes the event in a standard format to the app for processing (gather intel on attacks and threats without losing any protection). |
Certified Secure™ Threat Event Check | x |
Visible in ThreatScope™ | x |
Developer Parameters for Obfuscating App Logic Threat-Event™ | |
Threat-Event NAME | |
Threat-Event DATA | reasonData |
Threat-Event CODE | reasonCode |
Threat-Event REF | |
Threat-Event SCORE | |
currentThreatEventScore | Current Threat-Event score |
threatEventsScore | Total Threat-events score |
Threat-Event Context Keys | |
---|---|
message | Message displayed for the user on event |
failSafeEnforce | Timed enforcement against the identified threat |
externalID | The external ID of the event which can be listened via Threat Events |
osVersion | OS version of the current device |
deviceModel | Current device model |
deviceManufacturer | The manufacturer of the current device |
fusedAppToken | The task ID of the Appdome fusion of the currently running app |
kernelInfo | Info about the kernel: system name, node name, release, version and machine. |
carrierPlmn | PLMN of the device. Only available for Android devices. |
deviceID | Current device ID |
reasonCode | Reason code of the occurred event |
buildDate | Appdome fusion date of the current application |
devicePlatform | OS name of the current device |
carrierName | Carrier name of the current device. Only available for Android. |
updatedOSVersion | Is the OS version up to date |
deviceBrand | Brand of the device |
deviceBoard | Board of the device |
buildUser | Build user |
buildHost | Build host |
sdkVersion | Sdk version |
timeZone | Time zone |
deviceFaceDown | Is the device face down |
locationLong | Location longitude conditioned by location permission |
locationLat | Location latitude conditioned by location permission |
locationState | Location state conditioned by location permission |
wifiSsid | Wifi SSID |
wifiSsidPermissionStatus | Wifi SSID permission status |
With Threat-Events™ enabled (turned ON), Android developers can get detailed attack intelligence and granular defense control in Android applications and create amazing user experiences for all mobile end users when App Logic is detected.
The following is a code sample for native Android apps, which uses all values in the specification above for Obfuscate App Logic:
x
IntentFilter intentFilter = new IntentFilter();
intentFilter.addAction("");
BroadcastReceiver threatEventReceiver = new BroadcastReceiver() {
public void onReceive(Context context, Intent intent) {
String message = intent.getStringExtra("message"); // Message shown to the user
String reasonData = intent.getStringExtra("reasonData"); // Threat detection cause
String reasonCode = intent.getStringExtra("reasonCode"); // Event reason code
String currentThreatEventScore = intent.getStringExtra("currentThreatEventScore"); // Current threat event score
String threatEventsScore = intent.getStringExtra("threatEventsScore"); // Total threat events score
String variable = intent.getStringExtra("<Context Key>"); // Any other event specific context key
​
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
};
​
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU) {
registerReceiver(threatEventReceiver, intentFilter, Context.RECEIVER_NOT_EXPORTED);
} else {
registerReceiver(threatEventReceiver, intentFilter);
}
x
val intentFilter = IntentFilter()
intentFilter.addAction("")
val threatEventReceiver = object : BroadcastReceiver() {
override fun onReceive(context: Context?, intent: Intent?) {
var message = intent?.getStringExtra("message") // Message shown to the user
var reasonData = intent?.getStringExtra("reasonData") // Threat detection cause
var reasonCode = intent?.getStringExtra("reasonCode") // Event reason code
var currentThreatEventScore = intent?.getStringExtra("currentThreatEventScore") // Current threat event score
var threatEventsScore = intent?.getStringExtra("threatEventsScore") // Total threat events score
var variable = intent?.getStringExtra("<Context Key>") // Any other event specific context key
​
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
}
​
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU) {
registerReceiver(threatEventReceiver, intentFilter, Context.RECEIVER_NOT_EXPORTED)
} else {
registerReceiver(threatEventReceiver, intentFilter)
}
const { ADDevEvents } = NativeModules;
const aDDevEvents = new NativeEventEmitter(ADDevEvents);
function registerToDevEvent(action, callback) {
NativeModules.ADDevEvents.registerForDevEvent(action);
aDDevEvents.addListener(action, callback);
}
export function registerToAllEvents() {
registerToDevEvent(
"",
(userinfo) => Alert.alert(JSON.stringify(userinfo))
var message = userinfo["message"] // Message shown to the user
var reasonData = userinfo["reasonData"] // Threat detection cause
var reasonCode = userinfo["reasonCode"] // Event reason code
var currentThreatEventScore = userinfo["currentThreatEventScore"] // Current threat event score
var threatEventsScore = userinfo["threatEventsScore"] // Total threat events score
var variable = userinfo["<Context Key>"] // Any other event specific context key
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
);
}
RegisterReceiver(new ThreatEventReceiver(), new IntentFilter(""));
class ThreatEventReceiver : BroadcastReceiver
{
public override void OnReceive(Context context, Intent intent)
{
String message = intent.GetStringExtra("message"); // Message shown to the user
String reasonData = intent.GetStringExtra("reasonData"); // Threat detection cause
String reasonCode = intent.GetStringExtra("reasonCode"); // Event reason code
String currentThreatEventScore = intent.GetStringExtra("currentThreatEventScore"); // Current threat event score
String threatEventsScore = intent.GetStringExtra("threatEventsScore"); // Total threat events score
String variable = intent.GetStringExtra("<Context Key>"); // Any other event specific context key
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
}
NSNotificationCenter.DefaultCenter.AddObserver(
(NSString)"", // Threat-Event Identifier
delegate (NSNotification notification)
{
var message = notification.UserInfo.ObjectForKey("message"); // Message shown to the user
var reasonData = notification.UserInfo.ObjectForKey("reasonData"); // Threat detection cause
var reasonCode = notification.UserInfo.ObjectForKey("reasonCode"); // Event reason code
var currentThreatEventScore = notification.UserInfo.ObjectForKey("currentThreatEventScore"); // Current threat event score
var threatEventsScore = notification.UserInfo.ObjectForKey("threatEventsScore"); // Total threat events score
var variable = notification.UserInfo.ObjectForKey("<Context Keys>"); // Any other event specific context key
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
});
window.broadcaster.addEventListener("", function(userInfo) {
var message = userInfo.message // Message shown to the user
var reasonData = userInfo.reasonData // Threat detection cause
var reasonCode = userInfo.reasonCode // Event reason code
var currentThreatEventScore = userInfo.currentThreatEventScore // Current threat event score
var threatEventsScore = userInfo.threatEventsScore // Total threat events score
var variable = userInfo.<Context Key> // Any other event specific context key
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
});
xxxxxxxxxx
import 'dart:async';
​
import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
​
class PlatformChannel extends StatefulWidget {
const PlatformChannel({super.key});
​
State<PlatformChannel> createState() => _PlatformChannelState();
}
​
class _PlatformChannelState extends State<PlatformChannel> {
static const String _eventChannelName = ''; // Replace with your EventChannel name
static const EventChannel _eventChannel = EventChannel(_eventChannelName);
​
void initState() {
super.initState();
_eventChannel.receiveBroadcastStream().listen(_onEvent, onError: _onError);
}
​
void _onEvent(Object? event) {
setState(() {
// Adapt this section based on your specific event data structure
var eventData = event as Map;
​
// Example: Accessing 'externalID' field from the event
var externalID = eventData['externalID'];
​
// Customize the rest of the fields based on your event structure
String message = eventData['message']; // Message shown to the user
String reasonData = eventData['reasonData']; // Threat detection cause
String reasonCode = eventData['reasonCode']; // Event reason code
String currentThreatEventScore = eventData['currentThreatEventScore']; // Current threat event score
String threatEventsScore = eventData['threatEventsScore']; // Total threat events score
​
// Any other event specific context key
String variable = eventData['<Context Key>'];
});
}
​
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
Using Appdome, there are no development or coding prerequisites to build secured Android Apps by using Obfuscate App Logic. There is no SDK and no library to code or implement in the app and no gateway to deploy in your network. All protections are built into each app and the resulting app is self-defending and self-protecting.
Releasing and Publishing Mobile Apps with Obfuscate App Logic
After successfully securing your app by using Appdome, there are several available options to complete your project, depending on your app lifecycle or workflow. These include:
- Customizing, Configuring & Branding Secure Mobile Apps
- Deploying/Publishing Secure mobile apps to Public or Private app stores
- Releasing Secured Android & iOS Apps built on Appdome.
Related Articles:
How to Obfuscate Kotlin Code in Android Apps
Obfuscate Mobile Business Logic, Anti-Reversing in Android Apps
Dex Relocation, Anti-Reversing for Android Apps
How Do I Learn More?
If you have any questions, please send them our way at support.appdome.com or via the chat window on the Appdome platform.
Thank you!
Thanks for visiting Appdome! Our mission is to secure every app on the planet by making mobile app security easy. We hope we’re living up to the mission with your project.